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Abstract

Here we investigate the problem of real-time video mosaicing and its application to
UAV video imagery. The driving demand here is to improve overall situational awareness
by providing the UAV operator with a real-time video mosaic - i.e. a panoramic image
constructed in real-time from the incoming video frames captured from the UAV plat-
form in flight. Specifically, in this work we use a feature point based image alignment
by combining a state of the art feature point detector and a robust statistical selection
methodology (RANSAC). Image alignment is then performed by online bundle adjustment
supported by hardware accelerated visualization with quality enhancements and explicit
task parallelization on modern CPU hardware. The video mosaic output is constructed
solely from the input video frames with no additional constraining navigation, position
(eg. GPS) or platform parameters. In this way it is highly suited to situations where GPS
data may be unavailable or inaccurate. Real-time performance is further supported by
novel developments in the use of specific frame sieve in order to avoid high data redun-
dancy which is associated with temporally dense input video frames having significant
spatial overlap. An evaluation of our approach is presented to illustrate overall robust-
ness in video mosaic construction under a diverse range of conditions incuding varying
illumination and presence of motion within the scene.

1 Introduction

Video imagery received from the UAV platforms usually lacks the general context in which
it was captured. This limited view of the environment is often referred to by UAV operators
as “viewing through a drinking straw” (i.e. a very limited view of a much wider environment).
In order to improve the overall situational awareness we investigate how a video mosaic can be
constructed, consisting of multiple spatially aligned video frames, to provide a wider spacial
view of the environment within which the current sensor view can be superimposed. Further-
more, the limited bandwidth from the UAV platforms generally imposes a resolution constraint
on the received video data. As a result when a specific object of interest is present within the
scene the operator frequently zooms in the sensor to obtain a more detailed view at a higher
resolution. This is at the expense of losing the more general wide angle view on the environment
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and subsequently being able to put this detailed information within a more general environ-
mental context. Video mosaicing has the ability to retain the wide angle view into which this
higher resolution detailed information can be embedded. This visualization capability could be
combined with earlier work on vehicle [1], salient object [2] and people detection [3] to give an
overall environment wide context of automatic threat or object detection within UAV imagery.

A range of prior work in this topic area exists, not only dealing with video mosaicing [4, 5]
but also in the very closely related problem of panoramic stitching [6, 7]. The input to such a
technique is a set of overlapping images (video frames) and the goal is to align them spatially
and produce the larger output panoramic image (mosaic). However, when we examine these
techniques in detail they are generally not the same. In the case of panoramic stitching the
input is a set of unordered, high resolution, still images that overlap slightly. In the case of
video mosaicing the input video frames are temporally dense (i.e. multiple frames per second
(fps)) and in terms of spatial alignment have a large spatial overlap. This is caused by the fact
that the camera movement between two consecutive video frames, within the environment, is
usually relatively small and constrained.

In most cases video mosaicing algorithms have a real-time requirement and the problem is
therefore most generally studied with a live video source - in our case an UAV imagery is used
for this purpose. By contrast the panoramic stitching problem involving still images does not
have a real-time constraint and thus regular approaches to this related problem focus mainly on
the quality of the outputted composite (panoramic) image rather that real-time performance,
visualization and presentation.

The image alignment and stitching problem solutions are usually based on two different image
registration methods: feature based, where alignment of images is based on extracted feature
points [6], and direct (pixel based), where images are aligned directly, i.e. by matching the
individual image pixels [4]. Although Szeliski [8] suggests that the feature based algorithms
are preferable for large image separation stitching applications and notably video mosaicing is
not such a large separation problem, there are no definitive reasons for discarding the usage of
feature based approaches for video mosaicing. It also has distinct advantages such as significant
performance gains in the case of greater camera movement, greater inter-frame separation and
additionally easy recognition of breaks within the video frame sequence continuity. Moreover,
from empirical results a feature based approach appears to perform well in re-registration after
a brake in continuity of the incoming video sequence.

Feature based image registration has already been archived for still image panoramas but
the majority of prior work concentrates on the quality of the output rather than real-time
presentation [6, 7]. However, many of the ideas and concepts presented these works can be
adapted towards a real-time methodology and we will perform this non real-time to real-time
transition as a part of the work presented here.

In this work we present a full pipeline for real-time video mosaicing, including the realization
of real-time feature point detection and description [9], through the use of constrained real-time
homography and bundle adjustment [10, 11, 12] supported by real-time image presentation and
visualization [13]. Specifically we have developed novel approaches to support this real-time
application: separation of bundle adjustment into specialized pairwise bundle adjustment and
global bundle adjustment which significantly improves the processing time, the frame sieve con-
cept to handle the large data redundancy which is associated with temporally and spatially
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Figure 1: An example of a mosaic constructed from a top-down UAV camera footage

dense input video frames and hardware accelerated visualization with adapted visual enhance-
ments. The approach is then tested on different types of UAV video imagery (top-down camera
as well as angled view camera) using a ruggidized computer prepared for application in the
UAV command and control. Figure 1 presents an example of a video mosaic constructed using
our approach.

2 Feature Based Video Mosaic

2.1 Outline

In general the overall video mosaicing approach operates by identifying feature point matches
within individual video frames (SURF feature points [9]). These feature points are used to de-
rive a set of matches between consecutive frames. Afterwards the RANSAC [14] based method-
ology is applied for elimination of statistical outliers and rapid confirmation of the consistency
of the detected set of matches. Based upon this set of identified match correspondences the
bundle adjustment is used to estimate the image alignment.

We utilize a 3D visualization [13] and a set of visual enhancements to produce the resulting
video mosaic from captured frames and their estimated alignment. The gain compensation
[6] is used to compensate for artefacts caused by the Automatic Gain Control (AGC) present
on most modern cameras. Additionally blending is used to eliminate visible stitches between
images that contribute to the final mosaic image.

Real-time performance is achieved by applying the bundle adjustment in pairwise and global
manner. The pairwise bundle adjustment is responsible for relative frame to frame alignment
for newly captured video frames. The global bundle adjustment accounts for the accumulated
errors in the image registration providing the globally optimal image alignment. In order to
manage the case where consecutive frame to frame match cannot be found we additionally
implement aspects of global search within the panorama. The key frame based approach is
used to handle the overlapping frames and redundant information removal.
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2.2 Feature Point Detection and Matching

Feature Point Detection

The SURF detector and descriptor is used to extract the points of interest from the captured
video frames. SURF is scale and rotation invariant feature point detector and descriptor.
The scale and rotation invariance is essential, due to the fact that the input video footage
can undergo scaling (i.e. zoom) as well as rotational transformations. Since the problem of
feature detection and description has been widely studied previously, detailed benchmarks and
evaluations are available [15, 16].

Matching

In the task of video mosaicing, as opposed to still image panoramic stitching, we can assume
that the consecutive video frames overlap somewhat. There can be special cases when this
assumption is broken (see Section 2.4) but this will be handled separately. This assumption
simplifies the matching step, as we need to match the current video frame only with the previous
one.

The SURF descriptor produces a 64 dimension feature vector and a similarity measure be-
tween such SURF feature vectors has been chosen to be measured as an Euclidean distance.
The feature a from first image is considered a match to the feature b from the second image if
the difference d (euclidean distance) between these features fulfils the following relationship

d

dall
< t (1)

where dall is the minimum difference over all possible differences between feature a and every
feature from second image, excluding feature b. Finally t is a threshold value t ∈ {0...1}. This
is the nearest neighbour ratio matching strategy [9, 17]. The threshold has been empirically
chosen to be t = 0.65, with higher values found to result in a higher number of matches but
with significant additional false erroneous matches.

RANSAC Sieve

Due to the presence of noise (i.e. false matches) in the extracted SURF feature matches
the RANSAC sieve is used on the set of corresponding feature points to recognize the statis-
tical inliers. Contrary to the common RANSAC application, the estimated statistical model
is discarded and only the statistical inliers are passed to the next step which is the image
alignment using the bundle adjustment. Essentially RANSAC is used to identify the statistical
outliers and remove them from the global set of frame to frame SURF feature matches. The
RANSAC procedure provides means for randomly sampling and consistency checking for the
set of identified SURF feature point correspondences.

The model for RANSAC fitting has been chosen to be a projective transform (i.e. a 3x3
homography matrix) that provides a projective mapping from one image to another [10]. It is
obtained from four point correspondences by solving a set of linear equations using a Direct
Linear Transformation [10]. Although the camera geometry in our case can be different, for
example a non-linear constrained homography, here we use a generic linear transform as the
projective model. The reason for that is the fact that the alternative computation of a more
complicated model would be much more computationally demanding and would thus slow down
the RANSAC procedure considerably. The implemented model has proven itself to be sufficient
for the task of the inlier selection.
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2.3 Frame Alignment

The frame alignment is realized by the bundle adjustment [11, 12, 10], which addresses the
problem of optimizing the 3D structure of the reconstructed scene. In essence it is a large,
sparse, geometric parameter estimation problem. The 2D positions on images constitute the
measurement set, and the camera parameters with 3D coordinates of the feature points are the
parameters being sought. The goal is to minimize the reprojection error, i.e. a sum of squares
of euclidean distances of observed and predicted image features.

According to [12], the Levenberg-Marquardt algorithm has proven to be the best suited in
solving this non-linear least-squares problem. It can be thought as a interpolation between
the gradient descent and Gauss-Newton algorithms. Despite the high dimensionality of the
problem, the lack of dependences among most of the estimated parameters (e.g. the 3D points
do not influence each other) makes fast calculation possible because the structure of the problem
is sparse.

Here in our implementation we do not specifically assume a representation for the geometry
used in the problem and thus use a general approach that can be used in a wide range of
applications. We specify the projection function f that computes the estimated measurement
vector, i.e. the position of the point in the camera plane, given the camera and 3D point
parameters. The projection function f is given by the homography Hi of the camera i. For the
estimated point u in the projective space, we can calculate its i-th camera coordinates, i.e. its
position on the i-th image. These coordinates in terms of projective geometry are described by
vector ui, which can be calculated by applying the homography to the u point.

ui = Hiu (2)

In order to calculate the 2D image coordinates (xi, yi) of this point, we need to transform
the coordinates from the projective geometry to the image coordinate frame.

xi =
uix

uiz

yi =
uiy

uiz

(3)

These transformations are thoroughly described in [10].

2.4 Achieving Real-time Performance

Based on the presented outline (Sections 2.1 to 2.3) we furthermore outline key novel aspects
of this work which facilitate overall real-time performance of this video mosaicing approach.

Pairwise and Global Bundle Adjustment

Due to the real-time requirements of this application we cannot afford to perform the bundle
adjustment of all stored video frames every time a new frame is captured from the video
source. However, it is still desirable to use the bundle adjustment globally in order to reduce
the accumulated error which would be present if only pairwise image alignment would be used.

The image alignment has been divided into two parts: the pairwise bundle adjustment and
the global bundle adjustment. Pairwise bundle adjustments occurs every input video frame. It
takes only two frames, adjusting the second to align it optimally to the first one (i.e. it does not
change the parameters of the first frame). It starts from the last globally adjusted video frame,
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and ends on the last input frame (the frame that has been most recently captured). Since it
only takes two video frames at a time, it allows for a real-time placement of new frames relative
to those which are already present and globally adjusted.

The bundle adjustment methodology was originally developed as a method of computing
the parameters of a large structure and usually the linear homography was used to compute
the image to image correspondence. However, due to the fact that non-linear representation
can be used for the camera parameters the problem of image to image alignment has become
non-linear. This is the reason why the bundle adjustment is used even for a pairwise alignment
in our approach.

By constrast, global image adjustment is performed periodically. It adjusts all the images
simultaneously taking into account the overall structure of the mosaic and thus it corrects
accumulated errors. After the calculation is complete all the parameters of video frames that
took part in the adjustment are updated.

Despite the fact that global bundle adjustment is slow (can take seconds when tens of video
frames are present) it does not interfere with the rest of the system because in terms of the
implementation it can be operated in a separate, parallel thread.

Both bundle adjustment methods (pairwise and global) require an initial estimate of the
camera parameters. Actually all the video frames present in the mosaic are represented by
previously estimated parameters (either estimated from previous pairwise bundle adjustment
alone, or as estimated from prior global bundle adjustment if they have been present within
the mosaic for a significant period of time). However, when a new video frame is captured
from the video source, its camera parameters are unknown. In such a case we initialize these
parameters with the parameters of the frame to which the captured frame matches (i.e. after
the initialization the captured frame has the same parameters as the frame matched to it). This
has proven itself to be a sufficient initial estimate. Empirically initializing the input frame with
the parameters taken from the RANSAC sieve (after constraining and converting the estimated
homography model to camera parameters used in the bundle adjustment) have not shown any
improvements and occasionally caused a major misregistration of the video frame. RANSAC
is thus used solely for rapidly confirming the presence of a suitable match and for eliminating
the outliers from the image to image feature matchings dataset, whereas the pairwise bundle
adjustment is actually used to compute the image registration of the new frame into the existing
mosaic.

Image Mismatch Case

Occasionally the matching between the last video frame captured and the currently captured
video frame cannot be found. There are many different reasons for this occurrence. For example
a transmission break, a temporary camera malfunction, large scale movement of the UAV
platform or a non distinctive video frame lacking suitable feature points. In such a case, the
algorithm simply discards the input video frame and waits for the next. However, if it happens
repeatedly then the algorithm starts to search for a global match - i.e. it tries to match the
input video frame with one of all the currently stored ones within the video mosaic. This is
based on the assumption that during the “outage period” of the image matching the UAV will
have moved position within the environment and therefore it is reasonable to assume that a
match may be found against any portion of the previously captured scene image information.
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If the result of this search is successful then the new frame is aligned with the frame to which
it matches. From this point the normal operation continues.

Actual determination if a suitable match between two video frames exists is made on a simple
threshold basis. Firstly, there must be a sufficient amount of statistical inliers present in the
set of feature point matches after the RANSAC sieve routine has been executed. Additionally,
the inlier to outlier ratio must be greater than a set threshold.

Keyframes and Frame Sieve

The input video frames can be considered to be temporally dense with most of these video
frames having a significant spatial overlap which results in a high data redundancy. The idea
of key frames has been adopted to provide means of classification as to which portions of the
image data are to be retained and which can be discarded due to spatial duplication.

Despite the fact that only a portion of the video stream is retained and contributes to
final video mosaic initially all of the input video frames are pairwise aligned and displayed for
visualization. Only after the next video frame (t-th) has been captured and aligned within
the mosaic the decision about the previous one ((t − 1)-th) can be made (i.e. to discard or
not to discard due to spatial redundancy). This decision is made in the concept of the frame
sieve which essentially works on the identification of the key spatial frames within the image
sequence.

There are two criteria which are checked in order to classify the frame, one being the percent-
age of area that is not common to this given frame and the last key frame (this makes a measure
of the spatial distance between these frames). If this percentage archives a certain threshold,
the frame is considered to be a key frame. A smaller threshold will result in more frames being
retained. The other reason for a frame being labelled as a key frame is the attainment of a set
temporal distance to the last key frame measured in terms of the frame index in the sequence.1

The frame sieve is composed of three main steps: 1) Non key frame removal; 2) Overlapping
frame removal and 3) Oldest frame removal.

All the input frames are retained and displayed, key frames and non key frames. However,
the frame sieve, a routine determining which frames are to be discarded, takes into account
the type of the frame (key or not key) as it goes through its first step which is the removal
of all non key frames except the most recent one. This assures that the most recent frame is
available and displayed in addition to those which give the significant spatial coverage of the
video mosaic environment.

The second step erases all the frames that are overlapped by newer (temporally more recent)
frames and thus are not visible to the user (due to the overlap in the display). Strictly speaking,
this heuristic procedure is slightly more complicated. Frames are being investigated from the
oldest to the newest. If a frame is partially covered by newer frames (the specific amount of
coverage is specified by a threshold value), then frame is checked if it would leave gaps in the
mosaic after it has been erased, i.e. if the older, non erased frames cover these gaps. When
both tests are passed the frame is erased. This procedure has empirically proven itself to be
reliable and suitable for application in the second step of the frame sieve.

1This assumes a constant video frame rate from a video source device.
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(a) Mosaic not compensated for the AGC (b) Mosaic with gain compensation

Figure 2: The result of applying the gain compensation.

The last and third step in the overall pipeline of frame sieve is to erase the oldest frames if
the number of globally recorded frames exceeds a given threshold value.

2.5 Visualization

In most image stitching and video mosaicing approaches software visualization is used for
output display [6, 4]. In order to meet real-time requirements we use hardware accelerated
approach using OpenGL [13]. Stored video frames are represented as simple, textured 3D
rectangles in a manner discriminated by the assumed geometry. Parameters stored in every
video frame, estimated by the bundle adjustment, can be directly applied to the ModelView
matrix [13] to arrange these graphics primitives appropriately. However, the major drawback
of this approach is the lack of flexibility. The specific assumptions of OpenGL must be met and
thus some solutions used widely in the prior visualization and rendering of stitched panoramas
are not readily applicable [6]. Notably both gain compensation and blending must be handled
within a real-time context compatible with this use of hardware accelerated visualization.

Gain Compensation

Most modern video cameras are equipped with automatic gain control (AGC), which auto-
matically adjusts the camera exposure to achieve automatically regulated level of image bright-
ness and dynamic range based on the perceived light levels within the image. This feature can
introduce undesirable effects in the case of video mosaicing because essentially the dynamic
range of each video frame can vary depending on localised changes in lighting levels within the
scene. An example of such a case is presented in Figure 2a where AGC decreased the overall
camera gain during the camera movement. Correcting these differences is required to improve
the overall quality of the output video mosaic and mitigate the effect of the gain compensation
introduced by the AGC. An example of such correction is shown in the Figure 2b.

The method for calculating such gain compensation is detailed in [6]. The compensation
works in terms of minimizing the error function - intensity differences between overlapping
regions of the mosaic. The error function is defined as: -

e =
n∑

i=1

n∑
j=1

Nij((giIij − gjIji)2
1

σ2
N

+ (1− gi)2
1

σ2
g

) (4)
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(a) Mosaic without the blending (b) Mosaic with the blending applied

Figure 3: The result of applying the blending.

where Nij is number of pixels in image i that overlap with image j (note that Nij does not
necessarily equals Nji), gi is the searched gain parameter for image i while Iij is the mean
value of intensity of pixels in image i that overlap with image j. The σ are standard deviations
of normalized intensity error and gain. Following from the prior work of [6], we choose these
values to be σN = 10.0 and σg = 0.1. The (1 − gi)

2 term has been added to keep the gain
parameters close to unity without which it would result with a solution where g = 0.

This gives a linear system of equations, which we solve by the Gaussian elimination method.
This solution results in a recovery of the gain parameter vector g which contains the gain
parameters for every video frame, i.e. g1, g2, ..., gn. This is then applied to the visualization of
the video mosaic as a texture parameters (separately for each frame at the time of rendering).
The result of this gain compensation is shown in the Figure 2b.

Blending

The second visual enhancement used to improve the overall output quality is the video frame
blending. It solves the problem of visible seams on the resulting image mosaic by blending the
video frame border with the overlapped one. Brown and Lowe [6] suggest a multi-band blending
methodology to merge the images in the composite panoramic image but such an approach is not
readily possible to implement within real-time bounds using a hardware accelerated (OpenGL)
visualization approach. Hence we use a much simpler approach by associating an alpha channel
with each video frame. This channel specifies the opacity of a given part of the image. It is set
to be completely opaque in the video frame centre with an increasing transparency towards the
edges following a linear distribution. Despite the simplicity of the approach, the experimental
results show that it is effective. In Figure 3 we can see the seams apparent within the mosaic
prior to blending (Figure 3a) and an increase in the perceived quality of the mosaic post blending
(Figure 3b).

3 Results

The main application of our approach was an aerial map construction from the UAV video
imagery alone, i.e. no GPS or any other telemetry was used. The footage contained urbanised
as well as more challenging (i.e. feature-sparse) rural areas with large uniform fields that contain
lesser amounts of distinctive features to match.
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Video mosaics presented in Figures 4 and 7 have been constructed from a top-down UAV
camera. This is a typical setup for an aerial map construction. The bottom part of the mosaic
in Figure 4 left presents a case of feature-sparse rural area which has been handled properly by
our mosaicing approach. Some further tests have been performed using perspective angle view
from the UAV camera and resulting video mosaics are presented in Figure 5. This shows that
our approach can be successfully applied to a wide range of applications. Figure 6 presents the
video mosaic at different stages as the video imagery is being received from the UAV platform
(the red marquee shows the current position of the camera). This example clearly presents
the gain in situational awareness of UAV platform operator by providing the wide angle video
mosaic as opposed to the current view from the transmitted UAV video imagery alone.

The UAV used for this work was an electrically powered 3.6m wing-span fixed wing platform
operating at an approximate altitude of 110m. The camera pod (containing both thermal
and visible band cameras) was set to give a top-down planar view of the environment with
perspective views obtained during banked turns. Control of the UAV was by both remote-
control and autonomous auto-pilot for the collection of the aerial video imagery used in this
work.

In terms of the computing equipment a portable quad-core Intel Core i7 CPU based work-
station with a Nvidia GeForce 9800 GT graphics card was used for primary development but
secondary testing was also performed on a dual-core laptop where performance was also found
to be satisfactory. Both test platforms showed the availability of ruggidized multi-core CPU
hosts suitable for current operational scenarios for UAV command and control and can readily
host real-time video mosaicing from live platform video input.

The evaluation and tests carried on the UAV video imagery has shown the real-time perfor-
mance of the video mosaicing implementation. On average it takes about 75 ms for the program
to process one video frame. This gives a frame rate of about 13 FPS, which is clearly within
the bounds of real-time for any for the potential tasks this could be considered for. In cases of
a video frame mismatch the performance drops due to the executed search for a global match,
however it is still within the real-time bounds.

The performance of the visualization also meets the real-time requirement. The average pro-
cessing time of the hardware accelerated (OpenGL) loop is 45 ms in the average case and 50
ms in the worst case. This gives 20 frames per second in the worst case, which is enough for
visualization to be responsive for the user, i.e. the operations on the mosaic such as movement,
zooming and rotation can be performed smoothly and without any perceived delay. Addition-
ally, since the frame rate of the visualization is higher than the frame rate of the main processing
loop, the presentation of all captured video frames is assured.

The global bundle adjustment processing time varies with the number of video frames regis-
tered on the image. Although it depends on the actual positioning of the video frames and on
the number of matched feature points, for a low image count (about 20) the algorithm does not
take more than half a second to globally align the video frames. However, when we consider
larger mosaics, for example composed of 80 frames, the global bundle adjustment can take
about three to five seconds but it is sufficient for the task of elimination of the accumulated er-
rors. As this processing is carried out in parallel to the visualization and per-frame registration
its effect on real-time performance is negligible.
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Figure 4: Mosaics constructed from a top-down UAV camera footage
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Figure 5: Mosaics constructed from an angled UAV camera
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Figure 6: Construction of the video mosaic as new frames are being received
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Figure 7: Another example of a mosaic constructed from a top-down UAV camera footage

4 Conclusions

In this paper we have presented a novel, feature point based approach for the task of real-
time video mosaicing for UAV applications. The use of recent developments in the field of
feature point extractors along with the methods known from the field of high quality panoramic
stitching, hardware accelerated visualization and task parallelization are merged with novel
heuristics - the frame sieve and two-tier (pairwise/global) bundle adjustment to allow us to
robustly solve this demanding real-time task.

The evaluation of the presented system has confirmed that our system robustly constructs
video mosaics in real-time. It can endure the presence of motion in the scene, varying lighting
conditions and behaves well in a diverse range of environments. The presented solution is clearly
real-time since it achieves the frame rate of 13 FPS in terms of processing the input video stream,
and 20 FPS in terms of visualization. However, it requires a modern, parallelization capable
CPU hardware to operate within these bounds.

In general our methodology employing the feature point based stitching can be successfully
applied to various tasks concerning aerial video mosaicing and further development can intro-
duce a specialisation into more specific branches such as aerial maps construction, visual posi-
tioning, UAV command and control enhancement or integration with automated object/threat
detection [1, 2, 3].
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