
  

  

Abstract— Autonomous driving is a field currently gaining a 

lot of attention, and recently ‘end to end’ approaches, whereby 

a machine learning algorithm learns to drive by emulating 

human drivers, have demonstrated significant potential. 

However, recent work has focused on the on-road environment, 

rather than the much more challenging off-road environment. 

In this work we propose a new approach to this problem, 

whereby instead of learning to predict immediate driver control 

inputs, we train a deep convolutional neural network (CNN) to 

predict the future path that a vehicle will take through an off-

road environment visually, addressing several limitations 

inherent in existing methods. We combine a novel approach to 

automatic training data creation, making use of stereoscopic 

visual odometry, with a state of the art CNN architecture to map 

a predicted route directly onto image pixels, and demonstrate 

the effectiveness of our approach using our own off-road data 

set. 

I. INTRODUCTION 

A huge body of research has been conducted in the field 

autonomous driving, from both academia and the automotive 

industry, with much notable work in the areas of scene 

understanding [1] and road detection [2]. However, the more 

challenging problem of off-road autonomous driving has 

received relatively little attention, with only a limited body of 

work covering off-road scene understanding [3] and path 

detection [4]. In the off-road environment, path detection can 

be much more difficult than on-road, due to uneven terrain, 

hidden obstacles and an overall lack of structure. However 

there are many real-world applications for such technology, 

including in agriculture [5], military [6], and planetary 

exploration [7]. 

Convolutional Neural Networks (CNN) have demonstrated 

unprecedented results at a multitude of image classification 

tasks [8], revolutionising the field of computer vision in 

recent years. Loosely based on the biological brain, CNNs 

offer a ‘black box’ approach to machine learning, where the 

designer is aware of input and output data, but not necessarily 

of how that data is processed intermediately. Whilst this can 

create some interesting ethical and legal challenges, 

especially when dealing with autonomous vehicles where 

human lives may be at stake, it also means that CNN are likely 

to excel at tasks that humans can perform intuitively without 

relying on a structured set of rules, for example planning a 

safe route through an off-road environment. 
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This idea underpins the concept of end-to-end autonomous 

driving, first proposed by Pomerleau in 1989 [9] with the 

Autonomous Land Vehicle in a Neural Network (ALVINN), 

which uses a neural network comprising a single fully-

connected layer, taking a grayscale image and laser 

rangefinder data as input, trained to predict the steering wheel 

inputs made by a human driver. In 2004, the DARPA 

Autonomous Vehicle (DAVE) project [10] trained a more 

complex, six-layered network to drive a radio-control car in 

off-road environments, using data collected over several 

hours of human driving. More recent advances in deep-

learning have led to the approach proposed in [11], which uses 

a network of 5 convolutional layers and 3 fully-connected 

layers, trained with 72 hours of human driving data, to 

successfully follow lanes on public roads. 

In all three approaches, a neural network is fed an image 

from a vehicle mounted camera and trained to predict the 

steering input a human driver would make at the time the 

image was captured. However, we have identified three major 

limitations with this method: a) only immediate driving inputs 

are considered, with no thought as to how the vehicle path 

might change over time; b) driving inputs are learned for the 

characteristics of a specific vehicle, and so to apply the 

technique to a new vehicle with different steering 

characteristics, for example a tracked vehicle, would require 

the system be retrained on data from that vehicle; c) steering 

inputs do not necessarily relate consistently to the movement 

of the vehicle, especially in off-road environments where 

effective traction may be severely limited. 

In this paper, we address these limitations by proposing a 

visual end-to-end autonomous driving approach, whereby a 

CNN is trained to map the future vehicle path directly to 

pixels in an image from a forward-facing camera. Training 

data is created automatically by using stereoscopic visual 

odometry [12] to track the motion of a human-driven vehicle 

through a sequence of images and then map this motion into 

the image space of the initial frame such that pixels that the 

vehicle traverses are labelled as ‘path’. This addresses the 

identified limitations of existing end-to-end autonomous 

driving approaches [9,10,11], whereby only immediate driver 

input is predicted, by predicting a path that takes account of 

future changes in direction and does not rely on a direct link 

to driver inputs. Furthermore, the output of this process could 

be combined with semantic scene understanding, such as the 

approach described in [3], to semantically label path pixels  
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and create awareness of upcoming terrain characteristics that 

can be used to setup vehicle parameters, such as suspension 

stiffness and gear ratio, for optimum traction and passenger 

comfort. 
Subsequently, we use this automatically labelled data to 

train three state-of-the-art CNN architectures, each originally 
designed to perform a different segmentation or classification 
task. We also create a test dataset in the same manner, which 
we use to carry out a quantitative analysis of the performance 
of our approach using the three architectures. 

II. APPROACH 

The problem we are solving is the prediction of the path 

that a human driver would take through an off-road 

environment, made from a single image of that environment 

taken by a forward-facing vehicle-mounted camera. Our 

approach involves the automatic creation of training-data, 

whereby labelling of image pixels is automated using visual 

odometry to track vehicle motion under the control of a 

human driver, then using this data to train a CNN to map 

future vehicle path to image pixels, and by extension its real-

world location. 

A. Automated Dataset Creation 

Our training data comprises individual colour images 

captured by a forward-facing vehicle-mounted camera and the 

corresponding automatically labelled binary ground truth 

images. Images were captured by stereoscopic camera 

mounted on the roof of an off-road vehicle at a rate of 10 

frames per second. The 3D transformation matrix between 

each consecutive pair of stereo frames is computed using the 

f0 f1 f2 … fn 

    
 [T1] [T2] … [Tn] 

    
 

f0 f1 f2 … fn 

    
 [T1] [T2] … [Tn] 

    
 

Fig. 1 example sequences from our data set: starting from frame f0, transformation matrices [T1] to [Tn]  are computed for camera position 

in n subsequent frames, from which vehicle footprint can be calculated and translated back into image space so that path pixels can be 

labelled. Top row contains original frames f0 to fn, while bottom row shows aggregate computed footprint at each frame overlaid onto f0. 

 

 

 
Fig. 2 An example of an FCN for performing a semantic 

segmentation task [16] 

 



  

visual odometry approach of Geiger et al [12] such that the 

transformation between any pair of frames within a sequence 

can be obtained. As the stereo depth data is only required for 

the creation of this ground-truth data for training, a deployed 

version of this system would only require a single monocular 

camera. 

To select the frames that will form our dataset, we begin at 

the start of a video sequence and look for the first frame 

containing movement, f0, for which we create a label image L 

of matching dimensions with every pixel labelled as ‘not 

path’. Subsequent transformation matrices [T1], [T2] … [Tn] 

are used to calculate the location and orientation of the 

camera, and by extension the vehicle footprint, in respective 

frames, f1, f2, … fn, relative to the camera position in f0. We 

then reproject this vehicle footprint back into camera space at 

f0, labelling any pixel Lx,y contained within as ‘path’. This 

process, illustrated in Fig. 1, continues until the magnitude of 

the global transformation vector between the camera positions 

in f0 and fn is greater than distance threshold D, at which point 

the process is started again using the frame midway between 

f0 and fn as the new starting point. Empirically we found D = 

20m to be an appropriate value, as larger distances tended to 

cause noticeable propagation of transformation errors during 

the stereo visual odometry process. 

We collected two sets of data, each using a different stereo 

camera (firstly a pair of GoPro Hero 4 [13] cameras placed on 

a 3D printed mount with a stereo baseline of 400mm, then a 

Carnegie Robotics MultiSense S21 [14], with a baseline of 

210mm), vehicle and location to ensure variability within the 

data. In addition mirrored versions of every image were added 

to ensure an equal frequency of left and right turns. In total, 

our dataset comprises ~1000 RGB images of dimensions 

512×288 along with corresponding binary ground truth 

images of the same dimensions. We use a 90/10 split to divide 

our data into training and test sets. The challenges associated 

with capturing off-road data, along with the lack of publicly 

available datasets, are significant areas for future 

consideration. 

B. Network Architectures 

We use our data to train three CNN architectures: Segnet  

[15], Fully Convolutional Network (FCN) [16], and U-Net 

[17], each of which represents a slightly different approach to 

the concept of an encoder-decoder architecture for pixelwise 

labelling and segmentation.  

The design of SegNet, shown in Fig. 3, was motivated by 

segmentation and classification of road scenes for 

autonomous driving. It is a symmetrical architecture 

comprising an encoder based on the VGG16 [18] network, 

with fully connected layers removed, followed by a mirror- 

image decoder. The encoder consists of 13 convolution 

layers, each using a 3 × 3 kernel followed by batch 

normalization and rectified linear units, interspersed with 5 

max pooling layers, each downsampling its input by a factor 

of 2. The decoder replaces the max pooling layers with 

upsampling layers that use the corresponding max-pooling 

indices from the encoding phase to restore some of the spatial 

information that would otherwise be lost to pooling. The final 

layer of the network is a softmax classifier of dimensions 

c×w×h where c is the total number of classes (in this case 2: 

{‘path’, ‘not path’}), and w and h are the dimensions of the 

original input image. 

FCN, shown in Fig. 2, was designed primarily for object 

segmentation and classification, and while versions have been 

implemented based on various network architectures, we use 

a version based on VGG16 for better comparison with 

SegNet. The fully connected layers originally used in VGG16 

are replaced by convolution layers with large receptive fields, 

and dropout is used to reduce the risk of overfitting. A 1 × 1 

convolution is used to predict class likelihoods at each scale 

during the decoder phase, which are then concatenated with 

the corresponding max-pooling output before upscaling. 

Output is again a softmax classifier of dimensions c×w×h. 

U-Net, shown in Fig. 4, was initially motivated by 

segmentation of medical imagery, and is a more compact 

architecture than SegNet or FCN, comprising eighteen 3 × 3 

convolutions and four each of pooling and upsampling 

operations. The output of each upsampling operation is 

concatenated with the input of the corresponding pooling 

operation in order to retain spatial information that would 

otherwise be lost through downsampling. Again, Output is a 

softmax classifier of dimensions c×w×h. 

All three networks are implemented in Caffe [19], and in 

the case of SegNet and FCN we use models made publicly 

available by the original authors [15, 16]. 

The encoder section of each network is pretrained on the 

ImageNet [20] object recognition dataset, while the decoder 

is initialized with random weights - ImageNet presents a 

classification problem that outputs a single feature vector per 

image and so does not make use of a decoder. Our training 

data is then passed through each network in batches of 6 

images, with the softmax classification error computed at 

every pixel to give a training loss value for the entire batch,  

 
Fig. 3 SegNet CNN consisting of symmetrical encoder/decoder 

architecture [15] 

 

 
Fig. 4 U-Net CNN architecture [17] 

 



  

which is propagated backwards through the network using 

stochastic gradient descent with momentum (we set 

momentum=0.9 for all three network architectures). For 

SegNet we use a step function to decrease learning rate over 

training epochs, while the learning rate is fixed for U-Net and 

FCN. The initial learning rate is selected empirically to enable 

parameter fine-tuning without overfitting: for both SegNet 

and U-Net the value selected for initial loss was 1×10-3, while 

for FCN it was 1×10-10. A weight decay of 5×10-4 is also used 

in all three cases. Training continues until training loss is 

minimized such that no further gains are observed: this 

happened after 60,000 iterations for SegNet, 30,000 iterations 

for U-Net, and 100,000 iterations for FCN, most likely due to 

the lower learning rate. 

C. Post Processing 

CNN output is an array of dimensions 2×w×h, where one 

channel contains a map of confidence values C0 {0→1} that 

express the likelihood that a given pixel belongs to the class 

‘path’, and the other channel contains a map C1 {0→1} 

expressing the confidence that each pixel belongs to the class 

‘not path’, such that C0 and C1 are the inverse of each other 

and C0,x,y+C1,x,y=1. As C1 only contains information that can 

easily be inferred from C0, it can be discarded. 

An additional post-processing step is applied to C0 to create 

the final path confidence map for evaluation against ground 

truth data. Firstly, we use stereo disparity data to compute the 

distance from the camera to each pixel location in the image, 

and any pixel further than the distance threshold D = 20m is 

set to 0, as these pixels will have been ignored during the 

ground truth creation process. We then convolve the image 

with a Gaussian kernel of σ = 6 to smooth out any high-

frequency noise. 

Next, we set the confidence values of all pixels that are 

disconnected from the main path segment to 0. For the 

purposes of this step, we use a very low path confidence 

threshold δ and set all pixels where C0 < δ to 0. Empirically, 

we found a value of δ = 0.025 to give the best results. If the 

image contains multiple disconnected path segments, we 

determine which to consider the actual path by finding the 

pixel where C0,x,y > δ with the smallest Euclidean distance 

from C0,w/2,h (the central pixel of the bottom row of the image), 

and performing a flood fill operation starting at that point that 

treats pixels with a value of 0 as component boundaries. Any 

pixel that is outside of the component filled by this operation 

is set to 0. 

Some examples of output confidence maps before and after 

post-processing are shown in Fig. 5. 

D. Evaluation Methodology 

We evaluate the performance of the three trained networks, 

both with and without the post processing steps detailed 

above, using the 10% of our dataset that was set aside for 

testing. 

In all cases we threshold the output path confidence map 

such that any pixel that satisfies the condition C0,x,y > 0.5 is 

labelled ‘path’, and any that does not is labelled ‘not path’. 

We compare this thresholded image to the ground truth data 

to compute the following four metrics across the entire test 

dataset: accuracy expresses the proportion of total image 

pixels that are classified correctly as either ‘path’ or ‘not 

path’; precision expresses the proportion of those pixels that 

are labelled ‘path’ in the output image that are also labelled as 

such in the ground truth data; recall expresses the proportion 

of the pixels that are labelled ‘path’ in the ground truth data 

that are correctly classified as such in the output image; 

intersection over union (IoU) expresses the number of pixels 

that are correctly classified as ‘path’ as a proportion of the 

total number of pixels that are either labelled as such in the 

output image or labelled as such in the ground truth data. In 

all four cases, values are expressed in the range {0→1} with 

a higher value demonstrating superior performance. 

III. END TO END LEARNING 

In addition to evaluating our visual path prediction 

approach, we also reimplement and evaluate the end-to-end-

learning approach of Bojarski et al [11] in an off-road 

environment. Although no direct quantitative comparison can 

be made between the two approaches, we briefly outline our 

implementation and results. 

a) 

   

b) 

   
 

Fig. 5 Example output path confidence maps, a) before and b) after post processing 

 



  

A. Implementation 

 The end-to-end-learning network architecture consists of 

five convolution layers, three of which use a 5 × 5 kernel, the 

final two using a 3 × 3 kernel, followed by three fully-

connected layers. Input is a single colour image of dimensions 

256 × 136 and output is a single floating-point value {-1→1} 

that represents normalized steering wheel angle. The original 

authors used a significantly smaller input size of 200 × 66, 

however we found that too much useful information was lost 

when performing such a drastic downsampling of our off-road 

dataset. Fig. 6 shows the network layout as implemented by 

the original authors. 

 We train this network for 100,000 iterations using ~20,000 

images taken from our off-road data, each with an associated 

ground-truth normalised steering wheel angle, using a batch 

size of 6 images. Loss is computed as the mean squared error 

between predicted and ground-truth steering wheel angle 

across each batch, and backpropagated by stochastic gradient 

descent with momentum of 0.9. The initial learning rate is set 

to 2×10-4 and a step function is used to decrease this as 

training progresses. 

B. Evaluation 

The original authors of the end-to-end-learning approach 

we are implementing [11] did not conduct a quantitative 

evaluation of their approach, instead relying on the subjective 

measurement of the number of times a human passenger felt 

it necessary to override the driving decisions of the system. 

We evaluate performance by measuring the mean error 

between predicted and ground truth steering wheel angle. 

Over our test dataset, mean error between predicted and 

ground truth normalized steering wheel angle was 0.097. 

Unnormalised, this translates to an average error of 52.6° at 

the steering wheel, which, given the steering ratio of the 

vehicle, translates to approximately 3.5° of steering direction 

error at the road wheels. 

 Fig. 7 plots predicted steering angle against ground truth 

for our test data set, demonstrating a clear bias towards 

straight-ahead within the data which appears to be amplified 

in the predictions – despite ground truth samples existing right 

up to the full steering extents, no prediction demonstrated a 

magnitude of greater than 0.5. This suggests that the network 

optimised to a local minimum whereby it could minimize 

error by constraining its predictions close to the mean. This 

could potentially be addressed by modifying the training data 

so that a greater proportion of samples demonstrate sharp 

turns, or by modifying the training loss function so that loss 

is weighted proportionally to the distance a given sample lies 

from the mean. However, this does demonstrate an additional 

limitation of this approach that is especially significant in an 

off-road environment and that we aim to address with our own 

approach. 

IV. RESULTS 

Our results are shown in Table 1 with illustrative examples 

shown in Fig. 8, based on an evaluation over our test dataset. 

In terms of accuracy, the performance was similar across 

all three network types - SegNet and U-Net both demonstrated 

an accuracy of 0.95, while FCN did slightly worse with 0.94 

– and post-processing had no clear advantageous effect. 

While these figures may appear highly impressive, accuracy 

alone is of limited utility in this case as it takes account of 

every pixel across the entire image when certain image 
 

 

Fig. 6 The CNN architecture proposed by Bojarski et al [11] 

for end to end learning 

 

 
Fig. 7 Steering wheel angle values output by the end-to-end 

CNN for our test data set plotted against ground truth values. 

 



  

regions will consistently contain only one label across the 

entire dataset. To demonstrate this, we compared every output  

path confidence map to every non-corresponding ground truth 

image (i.e. those derived from different input images) and 

found the mean accuracy in this case to be 0.84. This implies 

that there could be a risk that a CNN optimize to a local 

minimum whereby it outputs a single average path that 

demonstrates high accuracy across its entire training dataset, 

however our results show that this did not happen. 

Recall again demonstrated very similar performance from 

SegNet and U-Net, while FCN performs slightly worse, 

however in this case the post-processing steps degraded 

performance slightly: from 0.86 to 0.85 in the case of SegNet 

and U-Net and from 0.84 to 0.82 in the case of FCN. The 

opposite is true of precision, which increased slightly with 

post processing – from 0.84 to 0.85 in the case of FCN, from 

0.86 to 0.88 in the case of SegNet and to from 0.86 to 0.89 in 

the case of U-Net. This is because the post- processing step 

will have removed or lowered the confidence value of more 

path pixels than it added. 

Regarding intersection over union, SegNet performed best 

without post-processing (0.76), however U-Net output would 

appear to benefit the most from post-processing, with its IoU 

improving from 0.75 to 0.77. Again, FCN was the worst 

performer (0.72), and neither the results from it nor SegNet 

showed any improvement with post-processing. We believe 

IoU to be the most useful metric for measuring performance 

at this task as it takes account of both false positives and false 

negatives while ignoring true negatives, which make up a 

significant proportion of the data and are part of the reason 

accuracy is so high: in the experiment described above where 

path confidence maps were compared against non- 

corresponding ground truth images, the mean IoU was only 

0.41. 

 

 

 

 

 

 

   

   

   

   
Input Image CNN Output Ground Truth 

Fig. 8. Five samples from our test data set. Top three rows: good results obtained respectively from FCN, Segnet and u-net; 

Penultimate row: an example of a poor result obtained from u-net, in this case caused by a combination of shadow and water 

on the ground; bottom row: an example where the track forks in front the vehicle creating two valid paths, although our 

ground truth only includes the path that the vehicle originally took. 

 



  

 
 Accuracy Recall Precision IoU 

SegNet 0.95 0.86 0.87 0.76 

SegNet post processed 0.95 0.85 0.88 0.76 

FCN 0.94 0.84 0.84 0.72 

FCN post processed 0.94 0.82 0.85 0.72 

U-Net 0.95 0.86 0.86 0.75 

U-Net post processed 0.95 0.85 0.89 0.77 

 

Table 1 Results from each CNN architecture, both with and without 

post processing 

 

V. CONCLUSIONS 

In this work we have proposed an approach to off-road path 

prediction that combines a novel method for automatically 

creating labelled training data with state of the art 

convolutional neural network architectures designed for 

pixelwise labelling and segmentation tasks [15,16,17]. 

We created our own off-road dataset which we used to train 

networks based on the SegNet, Fully Convolutional Network, 

and U-Net architectures. These networks were then evaluated 

using our testing dataset, and all three demonstrated good 

performance. Overall, the best result was obtained from U-

Net output, which considering its advantages in terms of 

speed and memory usage would make it ideally suited for 

deployment on an autonomous vehicle. 

Our approach addresses several limitations with existing 

end-to-end driving methods [9,10,11]. Firstly, our approach 

predicts the vehicle path up to a set distance, while existing 

approaches only consider immediate control inputs. 

Secondly, our approach is not tied to any specific vehicle or 

steering apparatus, whereas existing approaches are only 

applicable to the vehicle used to generate training data, as any 

change to steering ratio, turning circle, or steering method, for 

example on a tracked vehicle, would require different control 

inputs. By removing the direct link between CNN output and 

vehicle controls, we also believe that our approach is better 

suited to off-road environments where traction may be 

limited, and vehicle movement might not necessarily 

correlate with steering direction. Finally, by implementing 

one of these approaches ourselves, we demonstrated an 

additional limitation in its proclivity for predicting low-

magnitude steering inputs. 

VI. FUTURE WORK 

One aspect we did not explore with this work is temporal 

consistency – the data used is derived from video sequences, 

and so an additional constraint that filters predicted path 

across consecutive frames would likely improve performance. 

Another potential approach for achieving this could be the 

modification of CNN architecture such that some information 

from previous frames is retained to inform future predictions. 

The size and variability of available data is another area for 

consideration. 
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